1. Let R be the region bounded by \(y = x^2 + 1 \), \(y = 0 \), \(x = 1 \) and \(x = 2 \). Find the volume of the solid obtained by rotating the region R about the line \(x = -1 \).

2. 將曲線 \(y = x^3 \) 及 \(x = y^2 \) 所圍區域繞 x 軸旋轉體積。

3. (a) Find the volume of the solid generated by revolving the region between the y-axis and the curve \(x = \frac{2}{y} \), \(1 \leq y \leq 4 \), about the y-axis.

(b) The region in the first quadrant enclosed by the parabola \(y = x^2 \), the y-axis and the line \(y = 1 \) is revolved about the line \(x = \frac{3}{2} \) to generate a solid. Find the volume of the solid.